Tracer Advection II: Advanced Numerical Methods for Transport Problems

Ram Nair

Computational and Information Systems Laboratory (CISL)

National Center for Atmospheric Research

Boulder, CO, USA.

[The 2012 Dynamical Core Model Intercomparison Project: DCMIP Workshop, August 8th]

Atmospheric Numerical Modeling: [Desirable Properties]

Numerical algorithms for the next generation atmospheric models should be based on the following criteria:

- Inherent local and global conservation
- High-order accuracy
- Computational efficiency
- Geometric flexibility (complex domain boundaries, AMR capability)
- Non-oscillatory advection (monotonic or positivity preservation)
- High parallel efficiency (local method, petascale capability aiming O(100K) processors)
- Examples of numerical methods which can address the above requirements: Continuous Galerkin or Spectral Element (SE) method, Multimoment Finite-Volume (FV)

 Method and Discontinuous Galerkin (DG) Method etc..
- The DG method (DGM) is a hybrid approach which combines nice features of SE and FV methods

Discontinuous Galerkin Method (DGM): An Overview

Part-I

 How to solve the basic building block of a complex model – the advection problem – with DGM?

Flux-Form Atmospheric Equations (Conservation Laws)

- A large class of atmospheric equations of motion for compressible and incompressible flows can be written in flux (conservation) form.
- Conservation laws are systems of nonlinear partial differential equations (PDEs) in flux form and can be written:

$$\frac{\partial}{\partial t}U(\mathbf{x},t)+\sum_{j=1}^{3}\frac{\partial}{\partial x_{j}}F_{j}(U,\mathbf{x},t)=S(U),$$

where

- x is the 3D space coordinate and time t > 0. U(x, t) is the state vector represents mass, momentum and energy etc.
- \bullet $F_i(U)$ are given flux vectors and include diffusive and convective effects
- S(U) is the source term
- Linear transport problem is a simple example of conservation law:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0$$
, or $\rho_t + \operatorname{div}(\rho \mathbf{V}) = 0$

4 / 45

Discontinuous Galerkin Method (DGM) in 1D

1D scalar conservation law:

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0 \text{ in } \Omega \times (0, T),$$

$$U_0(x) = U(x, t = 0), \quad \forall x \in \Omega$$

- E.g., F(U) = c U (Linear advection), $F(U) = U^2/2$ (Burgers' Equation)
- The domain Ω (periodic) is partitioned into N_x non-overlapping elements (intervals) $I_j = [x_{j-1/2}, x_{j+1/2}], j = 1, \dots, N_x$, and $\Delta x_j = (x_{j+1/2} x_{j-1/2})$

DGM-1D: Weak Formulation

A weak formulation of the problem for the approximate solution U_h is obtained by multiplying the PDE by a test function $\varphi_h(x)$ and integrating over an element I_i :

$$\int_{I_{j}}\left[\frac{\partial U_{h}}{\partial t}+\frac{\partial F(U_{h})}{\partial x}\right]\varphi_{h}(x)dx=0,\quad U_{h},\varphi_{h}\in\mathcal{V}_{h}$$

Integrating the second term by parts \implies

$$\begin{split} &\int_{l_j} \frac{\partial U_h(x,t)}{\partial t} \, \varphi_h(x) dx - \int_{l_j} F(U_h(x,t)) \, \frac{\partial \varphi_h}{\partial x} \, dx \, + \\ &F(U_h(x_{j+1/2},t)) \, \varphi_h(x_{j+1/2}^-) - F(U_h(x_{j-1/2},t)) \, \varphi_h(x_{j-1/2}^+) = 0, \end{split}$$

where $\varphi(x^-)$ and $\varphi(x^+)$ denote "left" and "right" limits.

◆ロ > ◆ 個 > ◆ き > ◆ き > り へ で

DGM-1D: Flux term ("Gluing" the discontinuous element edges)

- Flux function $F(U_h)$ is discontinuous at the interfaces $x_{j\pm 1/2}$
- $F(U_h)$ is replaced by a numerical flux function $\hat{F}(U_h)$, dependent on the left and right limits of the discontinuous function U. At the interface $x_{i+1/2}$,

$$\hat{F}(U_h)_{j+1/2}(t) = \hat{F}(U_h(x_{j+1/2}^-, t), U_h(x_{j+1/2}^+, t))$$

- Typical flux formulae (Approx. Reimann Solvers): Gudunov, Lax-Friedrichs, Roe, HLLC, etc.
- Lax-Friedrichs nurmerical flux formula:-

$$\hat{F}(U_h) = \frac{1}{2} \left[(F(U_h^-) + F(U_h^+)) - \alpha(U_h^+ - U_h^-) \right].$$

DGM-1D: Space Discretization (Evaluation of the Integrals)

• Map every element Ω_j onto the reference element [-1,+1] by introducing a local coordinate $\xi \in [-1,+1]$ s.t.,

$$\xi = \frac{2(x - x_j)}{\Delta x_j}, x_j = (x_{j-1/2} + x_{j+1/2})/2 \Rightarrow \frac{\partial}{\partial x} = \frac{2}{\Delta x_j} \frac{\partial}{\partial \xi}.$$

ullet Use a high-order Gaussian quadrature such as the Gauss-Legendre (GL) or Gauss-Lobatto-Legendre (GLL) quadrature rule. The GLL qudrature is 'exact' for polynomials of degree up to 2N-1.

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{n=0}^{N} w_n f(\xi_n); \quad \text{for GLL}, \quad \xi_n \Leftarrow (1-\xi^2) P'_{\ell}(\xi) = 0$$

DGM-1D: Representation of Test function & Approximate Solution

- The model basis set for the \mathcal{P}^k DG method consists of Legendre polynomials, $\mathcal{B} = \{P_\ell(\xi), \ell = 0, 1, \dots, k\}.$
- Test function $\varphi_h(x)$ and approximate solution $U_h(x)$ belong to \mathcal{B}

$$U_h(\xi,t) \quad = \quad \sum_{\ell=0} U_h^\ell(t) \, P_\ell(\xi) \quad \text{for} \quad -1 \leq \xi \leq 1, \quad \text{where}$$

$$U_h^{\ell}(t) = \frac{2\ell+1}{2} \int_{-1}^1 U_h(\xi,t) P_{\ell}(\xi) d\xi \quad \ell=0,1,\ldots,k.$$

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2m+1} \delta_{m,n} \iff \text{Orthogonality}$$

• $U_h^{\ell}(t)$ is the degrees of freedom (dof) evolves w.r.t time.

- 4ロト 4回ト 4 差ト 4 差ト (型) から(^)

DGM-1D: Modal Basis Set for a " \mathcal{P}^2 " Method

- For the \mathcal{P}^2 method, $\mathcal{B} = \{P_0, P_1, P_2\} = \{1, \xi, (3\xi^2 1)/2\}.$
- Approximate solution:

$$U_h(\xi,t) = U_h^0(t) + U_h^1(t) \, \xi + U_h^2(t) \, [3\xi^2 - 1]$$

• The degrees of freedom to evolve in t are:

$$\begin{array}{rcl} U_h^0(t) & = & \frac{1}{2} \int_{-1}^1 U_h(\xi, t) d\xi & \Leftarrow \text{Average} \\ \\ U_h^1(t) & = & \frac{3}{2} \int_{-1}^1 U_h(\xi, t) \xi d\xi \\ \\ U_h^2(t) & = & \frac{5}{2} \int_{-1}^1 U_h(\xi, t) \left[3\xi^2 - 1 \right] d\xi \end{array}$$

DGM-1D: Orthogonal Basis Set (Modal Vs Nodal)

Modal basis functions

Legendre Polynomials (Degree <=4) 0.5 -0.5 -1 -0.5 0 0.5

Nodal basis functions

• The nodal basis set \mathcal{B} is constructed using Lagrange-Legendre polynomials $h_i(\xi)$ with roots at Gauss-Lobatto quadrature points (physical space).

$$U_{j}(\xi) = \sum_{j=0}^{k} U_{j} h_{j}(\xi) \quad \text{for} \quad -1 \leq \xi \leq 1,$$

$$h_{j}(\xi) = \frac{(\xi^{2} - 1) P'_{k}(\xi)}{k(k+1) P_{k}(\xi) (\xi - \xi_{j})}, \quad \int_{-1}^{1} h_{i}(\xi) h_{j}(\xi) = w_{i} \delta_{ij}.$$

- Nodal version was shown to be more computationally efficient than the Modal version (see, Levy, Nair & Tufo, Comput. & Geos. 2007)
- Modal version is more "friendly" with monotic limiting

rnair@ucar.edu (CISL/NCAR)

DCMIP: Advection-II

August 8th, 2012

DG-1D: Semi-Discretized Form

• Finally, the weak formulation leads the PDE to the time dependent ODE

$$\int_{I_{i}} \left[\frac{\partial U_{h}}{\partial t} + \frac{\partial F(U_{h})}{\partial x} \right] \varphi_{h}(x) dx = 0 \Rightarrow \quad \frac{d}{dt} U_{h}^{\ell}(t) = \mathcal{L}(U_{h}) \quad \text{in} (0, T) \times \Omega$$

Example: For the \mathcal{P}^1 case on an element I_i , we need to solve:

$$\begin{array}{lcl} \frac{d}{dt} U_h^0(t) & = & \frac{-1}{\Delta x_j} \left[F(\xi = 1, t) - F(\xi = -1, t) \right] \\ \frac{d}{dt} U_h^1(t) & = & \frac{-3}{\Delta x_j} \left(\left[F(\xi = 1, t) + F(\xi = -1, t) \right] - \int_{-1}^1 U_h(\xi, t) \, d\xi \right) \end{array}$$

Solve the ODEs for the modes at new time level $U_h^\ell(t+\Delta t)$ For the \mathcal{P}^1 case,

$$U_h(\xi, t + \Delta t) = U_h^0(t + \Delta t) + U_h^1(\xi, t + \Delta t) \xi$$

Time Integration

For the ODE of the form.

$$\frac{d}{dt}U(t) = \mathcal{L}(U) \quad \text{in } (0, T) \times \Omega$$

Strong Stability Preserving third-order Runge-Kutta (SSP-RK) scheme (Gottlieb et al., SIAM Review, 2001)

$$\begin{array}{rcl} U^{(1)} & = & U^n + \Delta t \mathcal{L}(U^n) \\ U^{(2)} & = & \frac{3}{4} U^n + \frac{1}{4} U^{(1)} + \frac{1}{4} \Delta t \mathcal{L}(U^{(1)}) \\ U^{n+1} & = & \frac{1}{3} U^n + \frac{2}{3} U^{(2)} + \frac{2}{3} \Delta t \mathcal{L}(U^{(2)}). \end{array}$$

- CFL for the DG scheme is estimated to be 1/(2k+1), where k is the degree of the polynomial (Cockburn and Shu, 1989).
- Remedy: Use low-order polynomials (k < 3) or efficient semi-implicit / implicit time integrators or high-order multi-stage R-K method.

◆□▶ ◆周▶ ◆三▶ ◆三▶ ● めぬべ

DGM-1D: Results (Simple Linear Advection Test)

1.0

-1.0

-0.5

0.0

0.5

Discontinuous Galerkin (DG) Methods in 2D Cartesian Geometry

2D Scalar conservation law:

$$\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}(U) = S(U), \quad \text{in} \quad (0,T) \times \mathcal{D}; \quad \forall (x^1,x^2) \in \mathcal{D},$$

where $U=U(x^1,x^2,t), \ \nabla \equiv (\partial/\partial x^1,\partial/\partial x^2), \ \mathbf{F}=(F,G)$ is the flux function, and S is the source term.

- The domain \mathcal{D} is partitioned into non-overlapping elements Ω_{ii}
- Element edges are discontinuous
- $lackbox{ Problem is locally solved on each element } \Omega_{ij}$

DG-2D Spatial Discretization for an Element Ω_e in \mathcal{D}

- Approximate solution U_h belongs to a vector space V_h of polynomials $\mathcal{P}_N(\Omega_e)$.
- The Galerkin formulation: Multiplication of the basic equation by a test function $\varphi_h \in \mathcal{V}_h$ and integration over an element Ω_e with boundary Γ_e ,

$$\int_{\Omega_e} \left[\frac{\partial U_h}{\partial t} + \nabla \cdot \mathbf{F}(U_h) - S(U_h) \right] \varphi_h d\Omega = 0$$

• Weak Galerkin formulation : Integration by parts (Green's theorem) yields:

$$\frac{\partial}{\partial t} \int_{\Omega_e} U_h \varphi_h \, d\Omega - \int_{\Omega_e} \mathbf{F}(U_h) \, \cdot \, \nabla \varphi_h \, d\Omega \quad + \int_{\Gamma_e} \mathbf{F}(U_h) \, \cdot \, \vec{n} \, \varphi_h \, d\Gamma = \int_{\Omega_e} S(U_h) \, \varphi_h d\Omega$$

- Orthogonal polynomials (basis functions) are employed for approximating U_h and φ_h on Ω_e .
- Surface and line integrals are evaluated with high-order Gaussian quadrature rule
- Exact Integration: The flux (line) integral should be an order higher than the surface integral (Cockburn & Shu, 1989).

DG-2D: High-Order Nodal Spatial Discretization

• The nodal basis set is constructed using a tensor-product of Lagrange polynomials $h_i(\xi)$, with roots at Gauss-Lobatto-Legendre (GLL) or Gauss-Legendre (GL) quadrature points $\{\xi_i\}.$

$$[h_i(\xi)]_{GLL} = \frac{(\xi^2 - 1) P_N'(\xi)}{N(N+1) P_N(\xi_i) (\xi - \xi_i)}; \quad \int_{-1}^1 h_i(\xi) h_j(\xi) \simeq w_i \delta_{ij}.$$

 $P_N(\xi)$ is the N^{th} degree Legendre polynomial; and w_i are Gauss quadrature weights

The approximate solution U_h and test function are represented in terms of nodal basis set.

$$U_{ij}(\xi,\eta) = \sum_{i=0}^{N} \sum_{j=0}^{N} U_{ij} h_i(\xi) h_j(\eta) \text{ for } -1 \leq \xi, \eta \leq 1,$$

The DG, SE & FV Methods

- For DGM degrees of freedom (d.o.f) to evolve per element is N², where N is the order of accuracy.
- ullet For FV method the *d.o.f* is 1 (cell-average), irrespective of order of accuracy.
- DGM is based on conservation laws but exploits the spectral expansion of SE method and treats the element boundaries using FV "tricks."

Monotonic Limiter for DG transport

Importance:

- In atmospheric models, mixing ratios of the advecting chemical species and humidity should be non-negative and free from spurious oscillation.
- The model should avoid creating unphysical negative mass

Challenges:

- Godunov theorem (1959): "Monotone scheme can be at most first-order accurate"
- There is a "conflict of interest" between the high-order methods and monotonicity preservation!
- In principle, a limiter should eliminate spurious oscillation and preserve high-order nature of the solution to a maximum possible extent

Existing Limiters for DGM:

- Minmod limiter (Cockburm & Shu, 1989): Based on van Leer's slope limiting, but too diffusive
- Limiters based on WENO or H-WENO (Qui & Shu 2005), Expensive and no positivity preservation
- New bound-preserving limiter: Positivity-preserving and local (Zhang & Shu, 2010)

Local Bound-Preserving Limiter for DGM

• If the global maximum M and minimum m values of the solution $\rho_{i,j}(x,y)$ is known, then the limited solution $\tilde{\rho}_{i,j}(x,y)$:

$$\tilde{\rho}_{i,j}(x,y) = \hat{\theta} \, \rho_{i,j}(x,y) + (1-\hat{\theta}) \, \bar{u}_{i,j}, \quad \hat{\theta} = \min\{|\frac{M - \bar{u}_{i,j}}{M_{i,j} - \bar{u}_{i,j}}|, |\frac{m^* - \bar{u}_{i,j}}{m^*_{i,j} - \bar{u}_{i,j}}|, 1\},$$

- $\bar{u}_{i,j}$ is the average solution in the element $\Omega_{i,j}$, $M_{i,j} = \max_{(x,y) \in \Omega_{i,j}} \rho_{i,j}(x,y)$ and $m_{i,j}^* = \min_{(x,y) \in \Omega_{i,j}} \rho_{i,j}(x,y)$.
- $\hat{\theta} \in [0,1]$. The positivity preserving option is a special case of BP filter, and can be achieved my setting $m^* = 0$.
- This limiter is conservative and local to the element (Zhang & Shu, JCP, 2010)

DG Advection on 2D Cartesian Grid (Solid-Body Rotation)

- A DG P² (third-order) Model version with 6 DOFs on 3 × 3 G-L grid (Zhang & Nair, MWR, 2012)
- Solid-body rotation (Leveque, 2002), 80×80 elements.

DG Advection on 2D Cartesian Grid

ullet HWENO uses 3 imes 3 cells and completely removes oscillation, but more diffusive.

DG-2D: Scaling Results (Levy, Nair & Tufo, 2007)

- ullet Problem: Advection of a Gaussin-hill, 80×80 elements with 6×6 GLL grid
- Strong scaling is measured by increase the number processes running while keeping the problem size constant
- Weak scaling is measured by scaling the problem along with the number of processors, so that work per process is constant

Extending DG Methods to Spherical Geometry: Various Grid Options

 DG method can be potentially used on various spherical mesh with triangular or quadrilateral (or both) elements

Cubed-Sphere: Central Equiangular (Gnomonic) Projection

- The sphere is decomposed into 6 identical regions, and free of polar singularities (Sadourny, MWR, 1972).
 - Equiangular projection using central angles (x^1, x^2) .
 - Non-orthogonal grid lines and discontinuous edges
 - All the grid lines are great-circle arcs
 - Quasi-uniform rectangular mesh, well suited for the element-based methods such as DG or SE methods (CAM-HOMME)

Non-Orhogonal Cubed-Sphere Grid System

Metric term (Jacobian) of [Cubed-Sphere \rightleftharpoons Sphere] Transform on the cubed-sphere: \sqrt{G}

Central angles $(x^1,x^2) \in [-\pi/4,\pi/4]$, $(\Delta x^1 = \Delta x^2)$ are the independent variables. Transport equation (*Nair et al. MWR*, 2005):

$$\frac{\partial}{\partial t}(\sqrt{G}\,h) + \frac{\partial}{\partial x^1}(\sqrt{G}\,u^1h) + \frac{\partial}{\partial x^2}(\sqrt{G}\,u^2h) = 0$$

Computational domain is the surface of cube $[-\pi/4, +\pi/4]^3$

Advection: Deformational Flow (Moving Vortices on the Sphere)

Initial field and DG solution after 12 days. Max error is $\mathcal{O}(10^{-5})$

A Smooth Deformational Flow Test [Nair & Jablonowski (MWR, 2008)]

- The vortices are located at diametrically opposite sides of the sphere, the vortices deform as they move along a prescribed trajectory.
- Analytical solution is known and the trajectory is chosen to be a great circle along the NE direction ($\alpha = \pi/4$).

DGM Advection: Extreme deformation

- Deformational flow: Fine filament preservation (Zhang & Nair, MWR, 2012)
- ullet Modal P^2 -DG with 100 imes 100 imes 6 cells, $\Delta t = 600$ s, 60-day simulation

DGM Advection: Deformational flow (Slotted-Cylinder)

- Deformational flow (non-smooth deformation) (Nair & Laurtitzen, JCP, 2010)
- Modal P^2 -DG with $45 \times 45 \times 6$ cells, $\Delta t = 0.00125$ s, T = 5.

DG on Yin-Yang Overset Spherical Grid [Kageyama and Sato (2004)]

- It avoids the pole problem of the RLL grid, and there are no singular points.
- The grid spacing is quasi-uniform with a largest to smallest grid-length ratio $\sqrt{2}$
- Each grid component is orthogonal, producing a simple analytical form for PDEs.
- Overlap regions provide two set of solution.
- Numerical schemes require special treatment for conservation

DG on Yin-Yang Grid: Advection [Hall & Nair, MWR, 2012]

- Sphere $S = Y \cup Y'$ where Y: Yin region, and Y': Yang region. $Y \perp Y'$
- Y is a rectangular region in lat/lon (θ, λ) -space, $\lambda \in [-3\pi/2 \delta, 3\pi/2 + \delta]$, $\theta \in [-\pi/4 \delta, \pi/4 + \delta]$ where δ is the overlap region.
- There are total $6 \times N_e^2$ elements (DOF) for the DG spatial discretization.

DG Advection on YY Grid: Cosine-Bell Test (Time-traces of $\ell_1, \ell_2, \ell_\infty$ errors)

- Cosine bell transport results with $N_e = 4$ and $N_g = 8$ nodes per element (approximately 3.2° resolution, and 6144 DOF).
- Figs from Hall & Nair, MWR, 2012
- Note: Exact mass conservation can be enforced by additional integral constraints (Baba et al. (2010), Peng et al. (2006))

DGM Convergence: Gaussian Advection and Spectral Convergence

• Advection of a Gaussian Profile (Levy et al. 2007; Hall & Nair, MWR, 2012)

Beyond Advection: DG-3D Model Vs. CAM Spectral Models

- DG-3D Hydrostatic Dycore (Nair et al. Comput. & Fluids, 2009)
- JW-Baroclinic Instability Test, Day 8 Ps ($\approx 1^{\circ}$ resolution)
- The DG Solution is smooth and free from "spectral ringing".

Vertical Aspects of 3D Advection: An Overview

Part-II

• The quasi-Lagrangian coordinates for advection problems

Hydrostatic Equations in Flux Form: Curvilinear (x^1, x^2, η) coordinates

$$\begin{split} \frac{\partial u_1}{\partial t} + \nabla_c \cdot \mathbf{E}_1 + \dot{\eta} \frac{\partial u_1}{\partial \eta} &= \sqrt{G} u^2 \left(f + \zeta \right) - R \, T \, \frac{\partial}{\partial x^1} (\ln p) \\ \frac{\partial u_2}{\partial t} + \nabla_c \cdot \mathbf{E}_2 + \dot{\eta} \frac{\partial u_2}{\partial \eta} &= -\sqrt{G} u^1 \left(f + \zeta \right) - R \, T \, \frac{\partial}{\partial x^2} (\ln p) \\ \frac{\partial}{\partial t} \left(m \right) + \nabla_c \cdot \left(\mathbf{U}^i \, m \right) + \frac{\partial (m \dot{\eta})}{\partial \eta} &= 0 \\ \frac{\partial}{\partial t} \left(m \Theta \right) + \nabla_c \cdot \left(\mathbf{U}^i \, \Theta \, m \right) + \frac{\partial (m \dot{\eta} \, \Theta)}{\partial \eta} &= 0 \\ \frac{\partial}{\partial t} \left(m q \right) + \nabla_c \cdot \left(\mathbf{U}^i \, q \, m \right) + \frac{\partial (m \dot{\eta} \, q)}{\partial \eta} &= 0 \\ m &= \sqrt{G} \, \frac{\partial p}{\partial n}, \nabla_c \equiv \left(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2} \right), \, \eta = \eta(p, p_s), \, G = \det(G_{ij}), \, \frac{\partial \Phi}{\partial n} = -\frac{R \, T}{n} \, \frac{\partial p}{\partial n}. \end{split}$$

Where m is the mass function, Θ is the potential temperature and q is the moisture variable. $\mathbf{U}^i=(u^1,u^2),\,\mathbf{E}_1=(E,0),\,\mathbf{E}_2=(0,E);\,E=\Phi+\frac{1}{2}\left(u_1u^1+u_2u^2\right)$ is the energy term. Φ is the geopotential, ζ is the relative vorticity, and f is the Coriolis term.

[Ref: HOMME/DG, Nair et al. Comput. & Fluids 2009]

4 D > 4 A > 4 E > 4 E > E 90 P

Vertical (quasi) Lagrangian Coordinates (Starr, J. Meterol. 1945)

A "vanishing trick" for vertical advection terms!

- Terrain-following Eulerian surfaces are treated as material surfaces ($\dot{\eta} = 0$).
- Simplified hydrostatic equations with no "vertical terms"
- The resulting Lagrangian surfaces are free to move up or down direction.

The Remapping of Lagrangian Variables

Vertically moving Lagrangian Surfaces

- Over time, Lagrangian surfaces deform and must be remapped.
- The velocity fields (u₁, u₂), and total energy (Γ_E) are remapped onto the reference coordinates.

Terrain-following Lagrangian control-volume coordinates

Remapping: Lauritzen & Nair, MWR, 2008; Norman & Nair, MWR, 2008)

Remapping (Rezoning or Re-gridding) on a 1D Grid

- Remapping: Interpolation from a source grid to target grid with constraints (conservation, monotonicity, positivity-preservation etc.).
- Application: Conservative semi-Lagrangian methods (e.g. CSLAM); Grid-to-grid data transfer for pre- or post-processing (GeCore).

Remapping (Rezoning or Re-gridding) on a 1D Grid

- Reconstruction: Fit a piecewise polynomial $\rho_j(x)$ for every cell $\Delta x_j = x_{j+1/2} x_{j-1/2}$, using the known cell-average values $\bar{\rho}_j$ from the neighboring cells.
- The subgrid-scale distribution $\rho_i(x)$ must satisfy the conservation constraint:

$$\bar{\rho}_j = \frac{1}{\Delta x_j} \int_{x_{j-1/2}}^{x_{j+1/2}} \rho_j(x) dx, \quad \Rightarrow \text{Mass} = \bar{\rho}_j \, \Delta x_j$$

 \bullet $\rho_j(x)$ may be further modified to be monotonic (E.g. PLM, PPM, PCM, PHM)

◆ロト ◆母 ト ◆ 壹 ト ◆ 壹 ・ か へ (や)

Remapping 1D Grid

• Mass in the target cell $(\Delta x_j^* = x_{j+1/2}^* - x_{j-1/2}^*)$ can be expressed as the difference of "Accumulated Mass" (\mathcal{A}_m) :

$$\bar{\rho}_{j}^{*} \Delta x_{j}^{*} = \mathcal{A}_{m}(RR') - \mathcal{A}_{m}(LL') \implies \bar{\rho}_{j}^{*} = \frac{1}{\Delta x_{j}^{*}} [\mathcal{A}_{m}(RR') - \mathcal{A}_{m}(LL')]$$

where

$$A_m(RR') = \int_{x_{Ref}}^{x_{j+1/2}^*} \rho(x) dx = \sum_{k=1}^{j-1} \bar{\rho}_k \, \Delta x_k + \int_{x_{j-3/2}}^{x_{j+1/2}} \rho_{j-1}(x) dx$$

Vertical Advection with Lagrangian η -Cooridate

- Reference (initial) grid $\eta = \eta(P, P_s) \in [\eta_{top}, 1]$
- Source grid = Lagrangian η_k^L
- Target grid = Eulerian η_k^E ; $\sum \Delta \eta_k^E = \sum \Delta \eta_k^L$
- Lagrangian η_k^L can be computed from the predicted "pressure thickness" ΔP (CAM-FV)
- lacktriangle Remapping is performed at every advective Δt
- Every 1D vertical trajectory information can be "recycled" for all tracers

3D Transport (CAM-SE): SE horizontal + vertical remapping

- CAM-SE (1°): JW-Test divergent flow field. SE horizontal transport is quasi-monotonic
- ullet $\Delta t_a = 4 imes 90$ s, vertical remapping by PCM (Zerroukat, 2005) for advection.

Figure courtesy: Christoph Erath

Summary & Conclusions:

- The DG method with moderate order (third or fourth) is an excellent choice for transport problems as applied in atmospheric sciences. DGM addresses:
 - High-order accuracy
 - @ Geometric flexibility
 - Ositivity-preserving advection
 - High parallel efficiency
 - Local and global conservation
- In comparison with finite-volume and finite-difference implementations of the Yin-Yang grid, the DG approach is considerably simpler as the overset interpolation is local, requiring information from the interior of a single element.
- In general, modified YY-P and YY meshes exhibited similar performance on most tests, while the YY-P mesh performed better on cases with strictly zonal flow.
- DG method is an ideal candidate for the new generation petascale-capable dynamical cores.
- The "moving" vertical Lagrangian (evolve and remap approach) method provides an
 efficient way for 3D conservative multi-tracer transport.

THANK YOU!